Aiexponent

Why AI Needs to Be Explainable and How to Make It So

In the past couple of years, artificial intelligence (AI) has made significant inroads into various industries including healthcare, manufacturing, and finance. According to a recent survey by Deloitte, more than 60% of executives believe that widespread adoption of AI will occur within the next three years. However, AI is not without its downsides and challenges. Because AI is a complex technology that learns from large amounts of data, it’s difficult for people to understand how it works. This means that AI systems need to be Explainable so that humans can understand why an action was taken or a decision was made. Unfortunately, most AI solutions aren’t very explainable yet. In this article, we’ll explore why AI needs to be explainable and how to make it so.

What is Explainable AI?

Explainable AI is the ability for humans to understand the decisions made by an AI system. This allows you to have a better idea of how the AI arrived at its conclusions. A good example is a decision tree. As a human, you can clearly understand how that tree arrived at a conclusion — even though the tree is a non-human algorithm. Explainable AI is particularly important for industries such as healthcare, where AI is being used to make critical decisions that affect human lives. For example, an autonomous car that is supposed to transport patients to the hospital should be programmed to avoid potential dangers on the road. It’s unlikely that this car would be programmed with a list of all possible dangers it could face on the road, so how can it “decide” how to avoid these dangers? It would need to use AI algorithms programmed to identify potential dangers and then take the appropriate course of action.

The Importance of Explainable AI

At present, most AI systems are black boxes — meaning that they’re designed in such a way that humans can’t understand their decision-making process. While this has great benefits for AI systems, it also means that humans can’t truly understand why an AI system made a particular decision. This presents some issues: As AI systems are integrated into industries like healthcare and law, where systems need to make critical decisions based on a patient’s health or a defendant’s criminal record, it’s crucial that humans can understand why an AI system made a particular decision. This is where explainable AI comes into play. By making AI systems more explainable, you ensure that humans have the necessary information to understand an AI system’s decision-making process.

Why is AI Currently Not Explainable?

One of the main reasons why AI systems aren’t currently very explainable is that they’re designed to learn from large amounts of data. By analyzing large amounts of data and making connections between various pieces of information, AI systems can learn to recognize patterns and eventually make decisions based on those patterns. Because AI is designed to learn complex patterns, it can be difficult for humans to understand how AI systems make decisions. This means that AI systems aren’t currently very explainable.

Ways to Make AI More Explainable

There are several ways you can make AI more explainable. These include

  1. Human-in-the-Loop: Human-in-the-Loop (HITL) is when a human is actively involved in the decision-making process of an AI system. A human might look at an AI system’s decision and then explain it to other humans.
  2. Explainable Models: One way to make AI more explainable is to build explainable AI models. Explainable models help humans understand how an AI system arrived at a particular decision by using a visual interface.
  3. Explainable Predictions: Another way to make AI more explainable is to create a model that predicts the probability of something going wrong. You can then use this model to explain why the probability is what it is.
  4. Open Source: Another great way to make AI more explainable is to make sure that your AI models are open source. This way, other people can check your algorithms and make sure that your models are legitimate.
  5. Visualization: You can also make AI more explainable by visualizing data so that humans can understand it more easily. This is helpful for both humans and AI to better understand data and make decisions based on it.

Popular Explainability tools for AI

  • OpenAI: OpenAI is a software tool that helps you build and train machine learning models. It allows you to identify and correct errors in your models while learning how they work. – Explainability Toolkit: The Explainability Toolkit (X-kit) is one of the most popular tools for making AI more explainable. X-kit allows you to create Explainable Artificial Neural Networks (X-neural networks) to help humans understand how an AI system makes decisions.
  • XLNT: XLNT (pronounced “excellent”) is a tool that lets you visualize and explain your AI models. It also allows you to see how your models have evolved over time. – BayesiaLab: BayesiaLab is an explainable AI tool that lets you build, train, and deploy your models. It also helps you visualize your data and check for errors in your models.
  • Don’t Panic: Don’t Panic is a tool that offers AI visualization and error detection. It allows you to check your AI models for errors and make them more explainable.
  • Wiggle: Wiggle is an AI visualization tool that lets you see the training process of your AI models. This is helpful for making your models more explainable.
  • Hypergraph: Hypergraph is an AI visualization tool that lets you look at your data in many different ways. This helps you avoid introducing errors into your models.
  • OpenML: OpenML is a machine learning platform that helps you create, train, and deploy your AI models. It also lets you visualize your data to make your AI models more explainable.
  • CLEVER: CLEVER is an AI tool that helps you build, test, and deploy your AI models. It also allows you to visualize your data and make your models more explainable.

Conclusion:

Making AI more explainable is crucial for the adoption of AI. It is essential to help humans understand how AI systems work and make decisions. With the help of these tools, we can make AI more understandable to humans and thus reduce the concerns of potential misuse and abuse of AI systems.

Share this Post

Sustainability and AI are two concepts that are now so often spoken of together that they almost seem like the new peanut …

The digital world has brought with it a new wave of innovation, one that focuses on the user and their experience instead …

Artificial intelligence is revolutionizing compliance in financial services. AI-enabled solutions are empowering banks to automate manual processes, provide real-time monitoring and detection …